NONSTEADY HEAT TRANSFER IN SEMI-INFINITE
REGION WITH NONLINEAR HEAT-ABSORPTION
LAW

Yu. I. Babenko "UDC 536.24.01:517.9

The method of determining the temperature gradient at the boundary of a semi-infinite region
proposed earlier for linear problems [1-3] is outlined as it applies to a nonlinear problem.

After an appropriate choice of scales of the variables, the problem with zero initial conditions describing
the heat transfer in a semi-infinite region absorbing heat according to the law aT +bT? (a, b >0) may be written
in the form
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The absorption law is chosen in this form so as to allow an exponential representation for slight temperature
deviations from the zero value: T+ T%2~expT—1.

It is required to determine the temperature gradient at the boundary of the region, q4 = (9T/9x),_,. Ear-
lier {1], the dependence between T and q = 8T/8x was found for an analogous problem associated with the linear
equation
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(where v is an arbitrary function having all its derivatives with respect to the two arguments) in the form
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Here, a prime denotes the derivative, with respect to the coordinate, and a dot the derivative with respect to
time. ‘

Setting v = k(1 +7T/2) makes Eqgs. (1) and (5) coincide. Substituting the same expression into Eq. (6), and as~
suming that T (by analogy with the linear problem) is an analytic function of x and has all its derivatives with
respect to t, a relation between q and T for Eqs. (1)-(4) may be written. It is assumed that T" =T +k(T +T%2)
and also (by analogy with the linear problem) that the mixed derivatives dM*DT/3xM a0 do not depend on the
order in which the differentiations are performed. The relation between q and T then takes the form
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Equation (7), written for x= 0, gives the relation between a specified value T4(t) and the desired gradient
at the boundary qg(t).

An explicit expression for g4 in terms of Ty will be sought in the form of a series in powers of k

Q= Gy + kg + B+ Ra+ ... (8}

Substituting Eq. (8) into Eq. (7) and equating expressions with the same power of k, recurrence relations for de-
termining qy are obtained
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Equations (8) and (9) give a solution of the formulated problem—an expression for the temperature grad-
ient at the surface for specified change in surface temperature.

In principle, this solution may be obtained for Egs. (1)~(4) by the method of successive approximation.
However, in practice only q, and q; may be found. Determining subsequent approximations involves an extreme-
ly large volume of calculations, even for a specific function Tg(t).

The method proposed here allows several terms of the expansion in Eq. (8) to be easily calculated, since
the whole temperature field is not determined for each approximation.

Example 1
Consider the case of a stepwise change in temperature at the boundary: Tg= @ = const. It follows from
Eq. (9) that
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To check the proposed method, an accurate value of q, is found by the method of successive approximation, ap-
plied to Eqs. (1)-{4). It is found that
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Comparison shows that the coefficient for @ is determined accurately by the proposed method and that for @2
with a relative error of 0.55%.

For the subsequent terms in the expansion in powers of k, according to Eq. (9), it is found that (to illu-
strate the rate of convergence of the series, each term of the expansion for DY is written separately, starting
with the first significant term)
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For example, for ® =1
— gl /247172 (1 + 1.365kF — 0.348k%2 + 0.079£%° — .. ).
This is suitable for practical calculations with kt< 1.

The present method will now be applied formally to a problem of the type in Eqs. (1)-(4) involving an
arbitrary nonlinear heat-conduction equation
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where o, 8, and v are analytic functions of the arguments, o=0.

Since it is impossible, at present, to give a rigorous justifications of the method as applied to nonlinear
equations, the solution has been checked for several nonlinear problems whose accurate solution is known. The
example which is simplest in computational terms will be given here.

Example 2

It may be confirmed by direct verification that the problem
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The method proposed here will now be used to solve Eq. (11) setting a=1, =—kT', y= 0 in Eq. (10). Us~
ing the formulas of [1], a relation analogous to Eq. (7) may be written, retaining terms up to ¢ (for D"5/2T).
The solution obtained is of the form
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Comparison with the accurate solution in Eq. (12) shows that the coefficient for k is calculated accurate-
ly and the coefficients for k% and k® with a relative error of 1.4 and 1.2%, respectively.

The conditions of applicability of the method are more constraining than for linear problems. From the
method of constructing the solution itself, it follows that Tg(t) must have derivatives of all orders in the inter-
val 0<t< . (In linear problems, T () mayhavea discontinuity of the first kind in the given range.) At the
point £ = 0, T4(t) may have a discontinuity of the first kind even in nonlinear problems, since the 6-like proper-
ties arising on differentiation [see Eq. (7)] are compensated by higher-order zeros—the factors D-¥Tg.

Consideration has also been given to several examples in which «, 5, and v in Eq. (10) are infinitely dif-
ferentiable, but not analytic functions of the arguments. It was found that the form ofthe solution in Eq.(9) is de-
termined correctly, but the infinite series arising in calculating the constant factors have no observable tenden-
cy to converge.

Thus, the method here proposed is practically applicable when «, 8, and vy are analytical functions ofthe
arguments, and the surface temperature Tg(t) is an infinitely differentiable function for all t>¢. At the point
t=0, a finite discontinuity in Ty is permitted.

NOTATION

DY, fractional-differentiation symbol; T, temperature; q, temperature gradient; k, parameter charac-
terizing heat-transfer rate; x, t, coordinate and time; «, 8, vy, coefficients of general heat-conduction egua-
tion; ®, constant; Indices: s, surface.
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